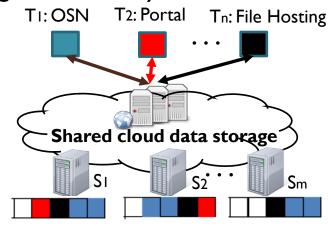


Towards Deadline Guaranteed Cloud Storage Services Guoxin Liu[†], Haiying Shen[†], and Lei Yu[‡]

Presenter: Guoxin Liu Ph.D.

 † Department of Electrical and Computer Engineering, Clemson University, Clemson, USA
 ‡ Computer Science
 Georgia Institute of Technology, Atlanta, USA

- Introduction
- Related work
- DGCloud Design
- Evaluation
- Conclusion


Introduction

- Cloud storage
 - Tenant incentive
 - Capital investment saving
 - Avoid management and maintenance
 - Pay-as-you-go
 - Provider profits
 - Maximize benefits
 - Resource multiplexing between more tenants
 - Minimize cost
 - Workload consolidation (energy cost)

Introduction

- Cloud storage
 - Challenge for providers
 - Tenant satisfaction
 - Unpredictable service latency with significant variation
 - Tenant income is inversely proportional to latency
 - Amazon portal: increasing page presentation by 100ms degrades sales by 1%.

Introduction

- Solution
 - Avoid server overloaded
 - Allocate workload among servers
- Challenge
 - How to allocate data: non-trivial
 - Satisfy Service level objective (SLO) [1] (e.g. 99% requests within 100ms) baked into cloud storage services
 - Heterogeneous environment
 - Workload among data
 - Service capability among servers
 - Energy saving

- Introduction
- Related work
- DGCloud design
- Evaluation
- Conclusion

- Deadline-aware networks
 - Workflow schedule
 - Urgent flow scheduled first
 - Bandwidth allocation
 - Prioritizing workflows
 - Data cache
 - Data operation
 - Allocate close to data requester
 - Proactively replicate
 - Physical closeness
 - Data availability
 - Topology optimization
 - Maximize bandwidth among any pair of servers
- Problem
 - None of them achieve multiple goals as DGCloud in cloud storage

- Introduction
- Related work
- DGCloud design
- Evaluation
- Conclusion

DLCloud Design

- DGCloud: Deadline Guaranteed Cloud storage service
 - System model: based on M/M/I, derive the upper bound of request arrival rate on each server to satisfy the SLOs of all tenants
 - Cooperative algorithms
 - A load balancing algorithm to satisfy SLO
 - A workload consolidation algorithm to maximize utilization
 - A data placement optimization algorithm to minimize the transmission cost

System Model

- Cloud storage system
 - Different service capacity
 - Different storage capacity
- Tenant
 - Different tenant SLOs
 - Variations of request rates among data
 - Data availability requirement
- Multiple goals
 - Tenant side: satisfy SLO
 - Provider side
 - Minimize network load while data reallocation
 - Maximize system utilization to reduce active servers
- Time complexity
 - NP-hard

Acceptable Request Arrival Rate

- M/M/I queueing system for Server n
 - Long tail distribution of service latency [2]
 - Poisson process of request arrivals [3]
 - Derive cumulative distribution of service latency $F_{S_n}(t)$
- Acceptable request arrival rate for Tenant k on Server n
 - For a specific SLO< t, F_{S_n} >, we get λ'_{S_n,T_k}
- Acceptable request arrival rate for Server n

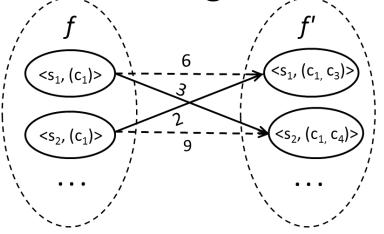
• $\lambda'_{S_n} = \min\{\lambda'_{S_n,T_k}\}$

[2] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks. In Proc. of SIGCOMM, 2012.

[3] D. Wu, Y. Liu, and K. W. Ross. Modeling and Analysis of Multichannel P2P Live Video Systems. TON, 2010.

Load Balancing Scheme

- Request Redirection Algorithm
 - Underloaded servers: $\lambda_{S_n} < \lambda'_{S_n}$
 - Overloaded servers: $\lambda_{S_n} > \lambda'_{S_n}$
 - Loop from most overloaded servers to redirect workload between to other replicas in underloaded servers
- New Replica Allocation Algorithm
 - From most overloaded servers, we created a replica for data partitions with largest workload to most underloaded servers, and then redirect maximum workload to avoid congestion
- Triger: in last measurement period, the worst SLO performance is below a threshold


Workload Consolidation

- Energy cost efficiency
 - Server utilization $\rho_{S_n} = \lambda_{S_n} / \mu_{S_n}$
 - Minimize energy consumption \equiv Minimize server usages \equiv Maximize all server utilization
- Procedure
 - Sort servers in an ascending order of λ_{S_n}
 - From the server at the beginning of the list
 - Shift its workload to all other servers
 - Success: deactivate this server
 - Failed: Stop workload consolidation process

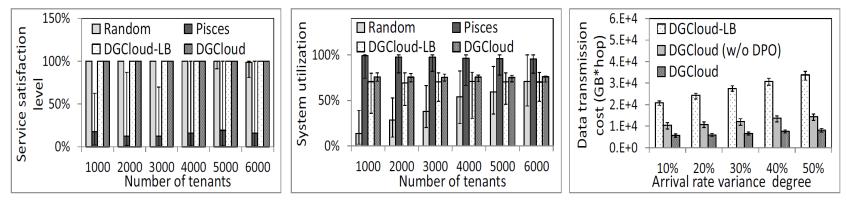
Optimal Data Replication

- Goal: Minimize data transfer during data reallocation
- Observation: replicate cost to convert S_n in f to S_n in f' may not be optimal
- Minimum-weight perfect matching
 - Minimize the total
 weight of a perfect
 matching in a bipartite
 graph

- Introduction
- Related work
- DGCloud design
- Evaluation
- Conclusion

Evaluation

- Experimental settings
 - 30000 data servers
 - [6TB, I2TB, 24TB] storage capacity
 - [80,100] service capacity
 - Fat-tree with three layers
 - 1000 ~ 6000 tenants
 - [100ms, 200ms] Deadline
 - 5% maximum allowed percentage of requests beyond deadline
 - [100, 900] data partitions with request arrival rate follows distribution in [4]


Evaluation

- Comparison methods
 - Deadline guarantee periodically
 - Random: randomly place data among servers
 - Pisces[5]: storage capacity aware data first fit
 - DGCloud-LB: deadline aware first fit
- Important metrics
 - SLO satisfaction level: actual percentage of requests within deadline/required percentage over the desired percentage $\in [0,1]$
 - System utilization: average server utilization of all active servers in the system

Evaluation

- SLO guarantee
 - Ensure SLO
- System utilization
 - Highest system utilization among all systems ensuring SLO
- Data transmission cost
 - Optimal data placement saves transmission cost

- Introduction
- Related work
- DGCloud design
- Evaluation
- Conclusion

Conclusion

- DGCloud: Deadline-Guaranteed Cloud service while achieving high system resource utilization
 - Mathematically derive the extra load that a server needs to move out to meet the SLOs of all tenants
 - A deadline-aware load balancing scheme to ensure SLOs
 - Work consolidation to maximize the system resource Utilization
 - Data placement optimization to minimize the transmission cost
- Future work
 - Dynamically redirect requests and replicate data to ensure SLO under a request burst

Thank you! Questions & Comments? Guoxin Liu guoxinl@g.clemson.edu

Electrical and Computer Engineering

Clemson University